

Cross-grained Contrastive Representation for Unsupervised Lesion Segmentation in Medical Images Ziqi Yu<sup>+</sup>, Botao Zhao<sup>+</sup>, Yipin Zhang, Shengjie Zhang, Xiang Chen, Haibo Yang, Tingying Peng and Xiao-Yong Zhang<sup>\*</sup>

# Fudan University, Zhejiang Lab, Helmholtz Al

# Background

- Segmentation for disease progression, pre- and postoperative treatment planning
- Labeling 3D MRI/CT volumes is time-consuming

## Method

- 1. Overall architecture (see Fig. 1)
- 2. Foreground-Background Determination
- 3. Lesion-Normal Tissue Discrimination
- a) Coarse-grained Discrimination:Cross entropy loss.
- and requires specialized medical knowledge.
- Most of unsupervised segmentation are reconstruction-based methods.
- Instance-level contrastive loss does not take into account the pathological characteristics of lesions in medical images.
- b) Fine-grained Discrimination:

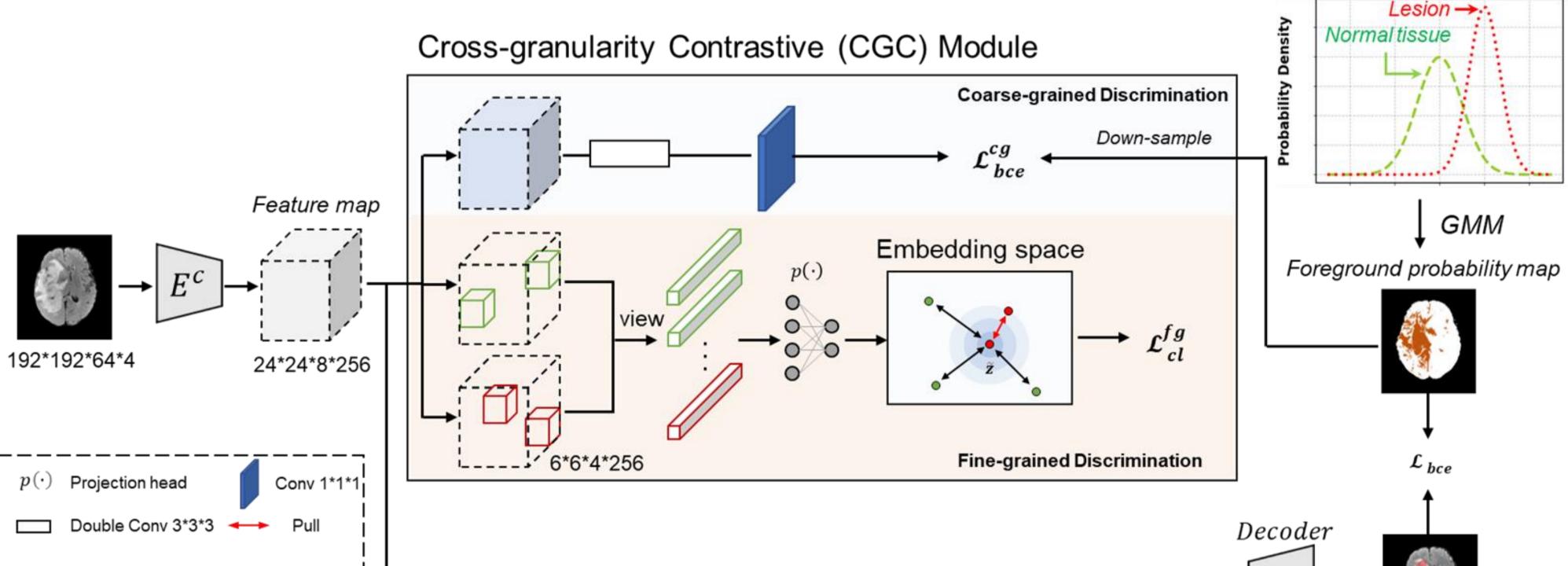
positive pair  $\Omega^+ = \{\widetilde{z}_i(\widetilde{x}_i) | \forall C(\widetilde{x}_i) \in C(r_i^{lesion}) \}$ 

negative ones

 $\Omega^- = \Omega \setminus \Omega^+$ 

$$\mathcal{L}_{cl}^{fg} = \sum_{i=1}^{N} \frac{-1}{|\Omega^{+}|} \sum_{x^{+} \in \Omega^{+}} \log \frac{\exp\left(CL^{+}/\tau\right)}{\sum_{x_{i} \in \Omega'} \exp\left(CL/\tau\right)}$$
$$CL^{+} = sim(\widetilde{z}_{x_{i}}, \widetilde{z}_{x^{+}}), CL = sim(\widetilde{z}_{x_{i}}, \widetilde{z}_{x})$$

 $sim(x,y) = \frac{xy^{T}}{\|x\| + \|y\|}$ 



| Table 1. Comparison of brain tumor segmentation performance on BraTS and CQ500 dataset. |                     |                       |                       |                       |  |  |
|-----------------------------------------------------------------------------------------|---------------------|-----------------------|-----------------------|-----------------------|--|--|
| Methods                                                                                 | BraTS               | dataset               | CQ500 dataset         |                       |  |  |
| wichious                                                                                | Dice                | Sensitivity           | Dice                  | Sensitivity           |  |  |
| Full supervision                                                                        | $0.9134 \pm 0.1026$ | 0.9136±0.1150         | $0.7962 \pm 0.1523$   | $0.7840 \pm 0.2138$   |  |  |
| AE                                                                                      | $0.3543 \pm 0.2462$ | $0.4542 \pm 0.2401$   | $0.3381 \pm 0.2369$   | $0.5142 \pm 0.2616$   |  |  |
| Context VAE [3]                                                                         | $0.4261 \pm 0.1874$ | $0.4371 \pm 0.2596$   | $0.3969 \pm 0.2446$   | $0.5348 \pm 0.2212$   |  |  |
| GMVAE [23]                                                                              | $0.4418 \pm 0.1726$ | $0.5374 \pm 0.2127$   | $0.4147 {\pm} 0.2184$ | $0.5362 \pm 0.2449$   |  |  |
| f-AnoGAN [24]                                                                           | $0.4835 \pm 0.1675$ | $0.5332 \pm 0.2446$   | $0.4024 \pm 0.2172$   | $0.5528 {\pm} 0.1882$ |  |  |
| Bayesian VAE [4]                                                                        | $0.5348 \pm 0.1618$ | $0.5575 {\pm} 0.2375$ | $0.4391 \pm 0.2474$   | $0.5446 {\pm} 0.2076$ |  |  |
| AnoVAEGAN [25]                                                                          | $0.5184 \pm 0.1560$ | $0.5737 {\pm} 0.2098$ | $0.4467 \pm 0.2286$   | $0.5649 \pm 0.1844$   |  |  |
| AMCons [15]                                                                             | $0.7362 \pm 0.1642$ | $0.7684{\pm}0.2084$   | $0.4741 \pm 0.2310$   | $0.4588 {\pm} 0.2469$ |  |  |
| Mumford-Shah [26]                                                                       | $0.7156 \pm 0.1881$ | $0.7063 \pm 0.2157$   | $0.5206 \pm 0.1937$   | $0.5087 \pm 0.2336$   |  |  |





### Ours (*P* from [26]) 0.7743±0.1365 0.7576±0.1974 $0.5569 \pm 0.1861$ $0.5348 \pm 0.1875$ GMM w/ threshold $0.7585 \pm 0.2091$ $0.7965 \pm 0.1892$ $0.6490 \pm 0.1975$ $0.5535 \pm 0.1485$ Ours w/o CGC 0.6427±0.2013 $0.7929 \pm 0.1877$ $0.8013 \pm 0.1815$ $0.6625 \pm 0.1945$ Ours (P from GMM) 0.8405±0.1323 0.8178±0.1756 0.6993±0.1755 $0.6768 \pm 0.1825$

### Figure 1. Schematic of our module.

|     |    |             |       | S A L    |              |           |        |              |     |     |       |
|-----|----|-------------|-------|----------|--------------|-----------|--------|--------------|-----|-----|-------|
| Raw | AE | Context VAE | GMVAE | f-AnoGAN | Bayesian VAE | AnoVAEGAN | AMCons | Mumford-Shah | GMM | Our | Label |

Figure 2. Visualization of exemplary segmentation results on BraTS and CQ500 dataset.

| Table 3. Ablation study of temperature on the BraTS dataset. |        |        |        |        |        |        |
|--------------------------------------------------------------|--------|--------|--------|--------|--------|--------|
| Temperature $(\tau)$                                         | 0.07   | 0.1    | 0.2    | 0.3    | 0.7    | 0.9    |
| Dice                                                         | 0.8254 | 0.8375 | 0.8405 | 0.8392 | 0.8248 | 0.8211 |
| ASSD [mm]                                                    | 1.4744 | 1.1809 | 1.1756 | 1.1550 | 1.2665 | 1.1871 |

| Methods                                                       | BraTS dataset         |                     |  |  |
|---------------------------------------------------------------|-----------------------|---------------------|--|--|
| wichious                                                      | Dice                  | ASSD [mm]           |  |  |
| Full supervision (backbone)                                   | $0.9134 \pm 0.1028$   | $1.1581 \pm 1.2894$ |  |  |
| Full supervision (nnUNet)                                     | $0.9161 \pm 0.0873$   | $1.0257 \pm 1.1316$ |  |  |
| P from GMM w/ threshold                                       | $0.7585 \pm 0.2091$   | $2.1472 \pm 1.9426$ |  |  |
| Backbone + $P$                                                | $0.7929 \pm 0.1877$   | $1.2330{\pm}1.1821$ |  |  |
| Backbone + $P$ + Global granularity                           | $0.8164 \pm 0.1631$   | $1.3392 \pm 1.6271$ |  |  |
| Backbone + $P$ + Local granularity                            | $0.8248 {\pm} 0.1548$ | $1.2513 \pm 1.2484$ |  |  |
| Ours ( $\widetilde{z} : \mathbb{R}^{12 \times 12 \times 4}$ ) | $0.8392 \pm 0.1389$   | $1.2367 \pm 1.4205$ |  |  |
| Ours ( $\widetilde{z} : \mathbb{R}^{6 \times 6 \times 4}$ )   | 0.8405±0.1323         | 1.1756±1.1439       |  |  |
| Ours ( $\widetilde{z} : \mathbb{R}^{3 \times 3 \times 4}$ )   | $0.8388 \pm 0.1410$   | $1.1943 \pm 1.4263$ |  |  |

### Conclusion

To summarize, we have presented a new unsupervised framework for medical image segmentation using a novel cross-granularity contrastive module. Our module contains coarsegrained and fine-grained discrimination paths, enabling the network to capture the distinctions between lesions and normal tissues at different levels of context. We evaluate our method on two large public datasets of CT/MRI scans and demonstrate that our approach improves a Gaussian mixture model-based segmentation by up to 9%, which surpasses all other unsupervised segmentation methods by a large margin. Additionally, our module can also be combined with other existing unsupervised segmentation methods to further enhance their performance.

### Results

**Dataset**:

- BraTS 2018 (MRI scans: T1, T1ce, T2, T2-F)
- CQ500 (CT scans): Preprocessed by Brain Extraction Net (BEN) [1] **Results:**
- Our proposed method achieves the Dice scores of 84.05% and 69.93% on BraTS and CQ500 datasets
- Our method is not bound to GMM-initiated segmentation
  Ablation Studies:
- 1. Effectiveness of Each Module (see Table 2)
- 2. Effectiveness of Temperature-calibrated Logits (see Table 3)

[1] "BEN: a generalizable Brain Extraction Net for multimodal MRI data from rodents, nonhuman primates, and humans." eLife (2022).

Speaker: Ziqi Yu E-mail: zqyu19@fudan.edu.cn

